Bigelow-Albatross Calibration for Skate Complex

Skate Plan Development Team

Beta-Binomial Model

 Binomial model at each station for number captured by Bigelow conditional on number captured by Both (Bigelow + Albatross)

$$N_{Bi}(L) \square Bin(N_i(L), p_i(L))$$

 Probability parameter is random across stations according to beta distribution

$$p_i(L) \square Beta(\pi(L), \phi(L))$$

Mean Model from CRD 10-05 (Model 1)

$$\log\left(\frac{\pi}{1-\pi}\right) = \log(\rho)$$

- π is the (mean) probability of capture by the Bigelow
- $\rho = E(C_B)/E(C_A)$ is the calibration factor

Length Models (2 and 3)

$$\log\left(\frac{\pi(L)}{1-\pi(L)}\right) = \log\left[\rho(L)\right] + \log\left(SA_B / SA_A\right) + \log\left(SF_B / SF_A\right)$$

- $\bullet \pi(L)$ is the (mean) probability of capture by the Bigelow
- ullet
 ho(L) is the relative catch efficiency (B/A)
- SA is the swept area
- SF is the sampling fraction
- Based on $E(C) = q \times SA \times D$

Dispersion Models (2 and 3)

For orthogonal polynomial and penalized smoothers,

$$\log[\phi(L)] = \alpha_1 \log(SA_B / SA_A) + \alpha_2 \log(SF_B / SF_A) + \varphi(L)$$

• For the gamma-based beta-binomial model,

$$\log[\phi(L)] = \log[SF_ASA_A + \rho(L)SF_BSA_B] + \varphi(L)$$

Smoothers for Length Models (2 and 3)

$$\log[\rho(L)] = \sum_{i=0}^{D} \beta_i g_i(L) \qquad \varphi(L) = \sum_{i=0}^{D} \beta_i g_i(L)$$

- The more terms, the less smooth the fit can be.
- For orthogonal polynomial, D is the degree of the polynomial and $g_i(L)$ are uncorrelated
 - $-\ D$ ranges from 0 to 12 for both relative catch efficiency and dispersion parameter
- For penalized smoothers $g_i(L)$ are basis components and D is the number of columns of the basis
 - The number parameters is estimated via a penalty term.

Season and Region (Model 3)

- "Season" is whether the data were obtained during the spring or fall surveys or during non-survey tows conducted during summer and fall (site-specific).
- Models accounting for season estimated parameters specific to each season
- North and South Regions were defined: North side of Georges Bank and Gulf of Maine or everything below
- Strata are given in Table 4
- Models accounting for region also accounted for season.
- Estimated parameters were region and season specific
- We intended to further consider depth categories (Table 5) but data were insufficient for some season/region/depth subsets

Determining a final Model 2 and 3

- The suite of fitted models with different smoothers types and numbers of parameters were compared using AIC_c to determine a final Model 2.
- The same type of smoother as the final Model 2 was used for fitting models by season and region.
- Used AIC_c to compare the fitted seasonal and regional models to each other and Model 2

Calibration Data

- For Model 1 (CRD 10-05), the data are numbers per tow for each vessel by species
- For Models 2 and 3 data are numbers per tow per 1 cm length class of all species combined.
- After preliminary analyses for Model 2 the PDT decided to pool information for skates greater than 94 cm.
 - Assigned 107 cm (average of lengths in this pool).

Model 1 Results (Table 1)

Calibration Coefficient (Std Err)	Comment
2.785519 (0.32)	Spring Survey
2.174334 (0.31)	Fall Survey
3.661128 (0.51)	Fall Survey
3.626359 (0.58)	Fall Survey
4.449518 (0.67)	Fall Survey
6.189401 (0.81)	Fall Survey
8.813973 (0.98)	Based on the calibration coefficient for little skate in the fall survey comparisons
	2.174334 (0.31) 3.661128 (0.51) 3.626359 (0.58) 4.449518 (0.67)

Comparison of Models in classes 2 and 3(Table 6)

Ran k	Model Type	#pdf	# φ length parameters	φ Covariat es	# Total parameters	-LL	AIC _c	(AIC _c)
1	SP(Season,Regi			SF				
	on)	37.02	5		46.02	-7359.32	14811.18	0.00
2	SP(Season)	15.56	4	SF	23.56	-7423.64	14894.53	83.36
3	SP	6.80	1	SF	8.80	-7522.98	15063.58	252.40
4	OP	9	1	SF	11	-7520.85	15063.73	252.55
5	OP	10	1	SF	12	-7520.35	15064.74	253.57
6	OP	9	2	SF	12	-7520.49	15065.01	253.83
7	SP	6.54	10.24	SF	16.78	-7515.75	15065.14	253.96
8	SP	6.81	1	SF, SA	9.81	-7522.88	15065.42	254.24
9	OP	9	1	SF, SA	12	-7520.76	15065.56	254.38
10	OP	10	2	SF	13	-7520.00	15066.04	254.87
11	OP	9	7	SF	17	-7516.00	15066.07	254.90
12	OP	11	1	SF	13	-7520.24	15066.51	255.34

Issues with converting previous Albatross indices into Bigelow Equivalents

- Potential biases due to changes in length composition if length-based methods not used
- Potential biases if length-weight relationships vary over time and data are not available to estimate them
- Re-calculation of reference points required
- Poorer precision of indices induced by conversion may translate into greater CVs in reference point algorithm
- Biases of conversion when zeros observed by Albatross (e.g., barndoor)
- All of this would imply the peer-review process would be appropriate for this change in reference point methodology